



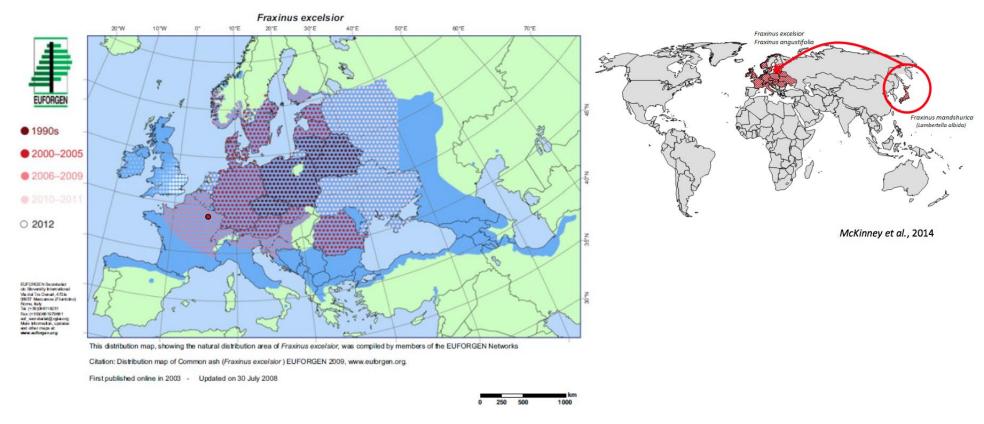
Coralie FRITSCH - INRIA, IECL

En collaboration avec

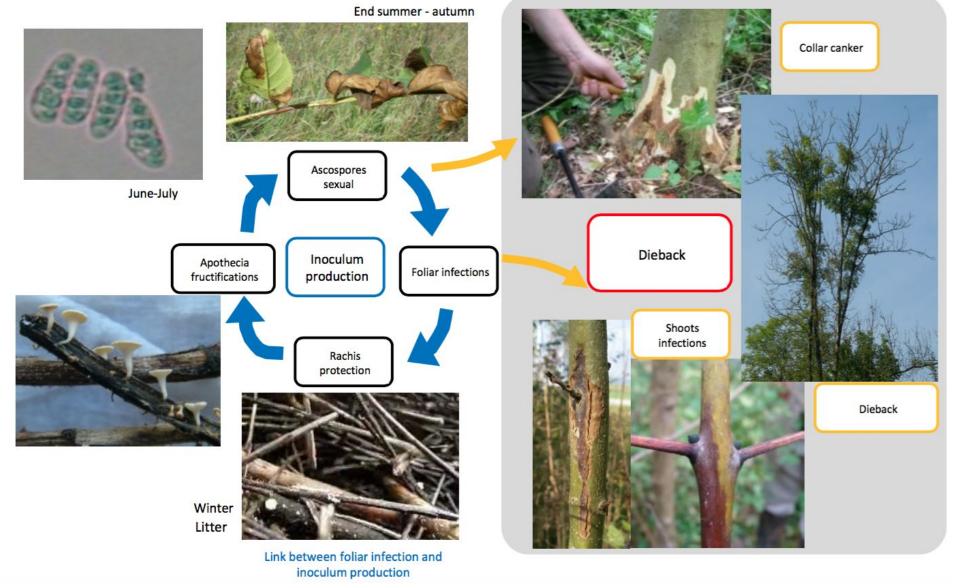
- Anne-Gégout Petit (Inria, IECL)
- Benoît Marçais (INRAE)
- Marie Grosdidier (INRAE)

La chalarose, une maladie fongique qui affecte les frênes

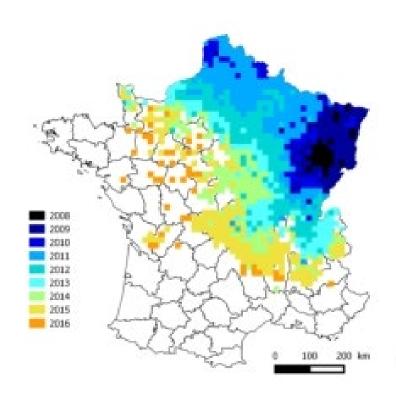
- émerge en Pologne en 1990
- 2008 en France
- invasion rapide et massive



Cycle de la maladie



Des données et des modèles pour répondre à des questions biologiques



1 donnée = % de Frênes infectés parmi 30 Frênes observés dans un quadrat ~ 500 données / an

- modèle pour l'infection des rachis
- modèle pour le développement des symptômes
- modèle pour la loi des observations

Estimation des paramètres pour répondre à :

- quelles données climatiques impactent la chalarose ?
- vitesse de propagation
- par où la chalarose a atteint les Pyrénées ?
- ...

Le modèle

Modèle de réaction-diffusion pour la dynamique des rachis infectés

$$\nu_{a}(x) = \begin{cases} (\beta_{0} + \beta_{1} h_{a}(x)) R_{a}(x) & \text{if } R_{a}(x) \geq r \\ (\beta_{0} + \beta_{1} h_{a}(x)) \frac{R_{a}(x)^{2}}{r d(x)} & \text{if } R_{a}(x) < r \end{cases}$$

$$\frac{\partial w_{a}(t, x)}{\partial t} = D \Delta w_{a}(t, x) + \frac{\nu_{a}(x)}{\tau}$$

$$\chi_{a} = (w_{a}(\tau, x) \wedge S) d(x)$$

$$R_{a+1}(x) = \chi_{a}(x) + \chi_{a-1}(x)$$

production de spores dispersion des spores infection des feuilles infection de rachis

Observations: $N_a^i p_a^i \sim Bin(N_a^i, q_a^i)$

avec $N_a^i = Nb$ arbres observés, $p_a^i = %$ arbres malades parmi ceux observés

où
$$q_{a+1}^i = C_{\text{pers}} \, q_a^i + \tilde{q}_{a+1}^i (1 - C_{\text{pers}} \, q_a^i), \qquad \tilde{q}_{a+1}^i = \frac{\chi_a^i f(T_a^i)}{r_S \, d(i)} \wedge 1$$

10 Paramètres à estimer : D, β_0 , β_1 , r, S, C_{init} , r_S , γ , κ , C_{pers}

Le modèle

Modèle de réaction-diffusion pour la dynamique des rachis infectés

$$\nu_{a}(x) = \begin{cases} \left(\beta_{0} + \beta_{1} h_{a}(x)\right) R_{a}(x) & \text{if } R_{a}(x) \geq r \\ \left(\beta_{0} + \beta_{1} h_{a}(x)\right) \frac{R_{a}(x)^{2}}{r d(x)} & \text{if } R_{a}(x) < r \end{cases}$$

production de spores dispersion des spores infection des feuilles infection de rachis

$$\frac{\partial w_a(t,x)}{\partial t} = D \Delta w_a(t,x) + \frac{\nu_a(x)}{\tau}$$
$$\chi_a = (w_a(\tau,x) \wedge S) d(x)$$

 $R_{a+1}(x) = \chi_a(x) + \chi_{a-1}(x)$

r : effet Allee

 $h_a(x)$: pluviométrie

 T_a^i : température

 $C_{\rm pers}$: proba. persitence symptômes

Observations: $N_a^i p_a^i \sim Bin(N_a^i, q_a^i)$

avec $N_a^i = Nb$ arbres observés, $p_a^i = %$ arbres malades parmi ceux observés

où
$$q_{a+1}^i = C_{\mathsf{pers}} \, q_a^i + \tilde{q}_{a+1}^i (1 - C_{\mathsf{pers}} \, q_a^i), \qquad \tilde{q}_{a+1}^i = rac{\chi_a^i f(\mathcal{T}_a^i)}{r_{\mathsf{S}} \, d(i)} \wedge 1$$

10 Paramètres à estimer : D, β_0 , β_1 , r, S, C_{init} , r_S , γ , κ , C_{pers}

COULTION OF IN COUNTY OF MICHOLIC OF MICHORIC TO COUNTY EVEN

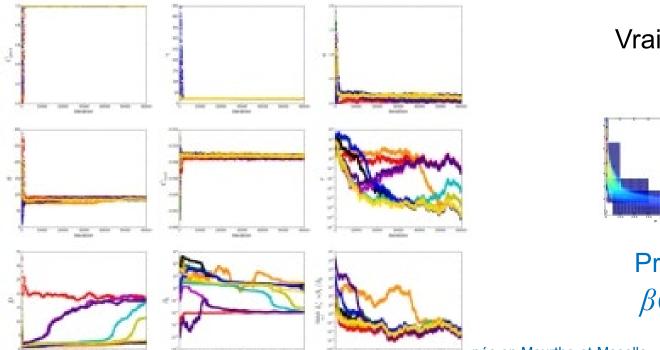
Réduction de modèle et premières estimations grossières

Modèle non identifiable :

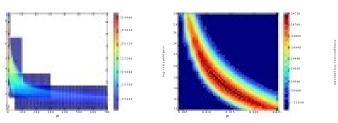
 $ightharpoonup r_{\rm S} = 1000
ightharpoonup$ on fixe l'unité de mesure des rachis infectés

Première estimation statistique grossière :

- C_{pers} = 1 → les frênes ne guérissent pas de leurs symptômes
- $\beta_1 = 0 \rightarrow l'hétérogénéité de la pluviométrie a un impact négligeable$
- $ightharpoonup r \approx 0 \rightarrow l'effet Allee est négligeable$



Vraisemblance sur une grille grossière

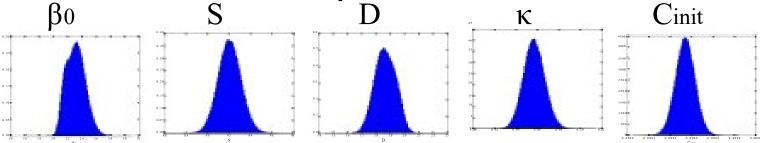


Première estimation de β_0 , D, γ , κ , S, C_{init}

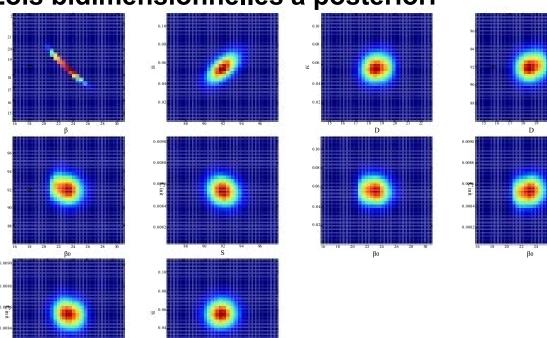
Lois a posteriori

obtenues par un "Adaptive Multiple Importance Sampling Algorithm"

Lois unidimensionnelles a posteriori

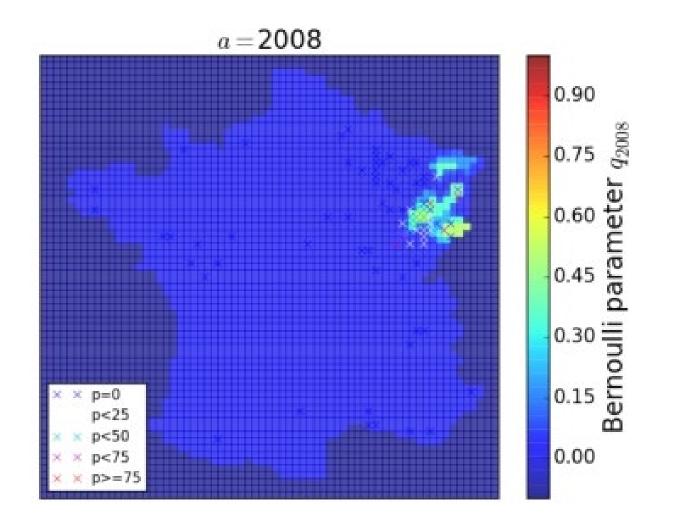


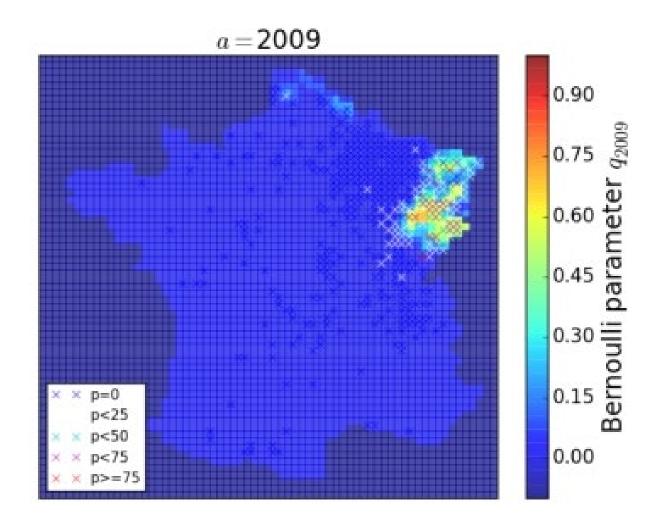
Lois bidimensionnelles a posteriori

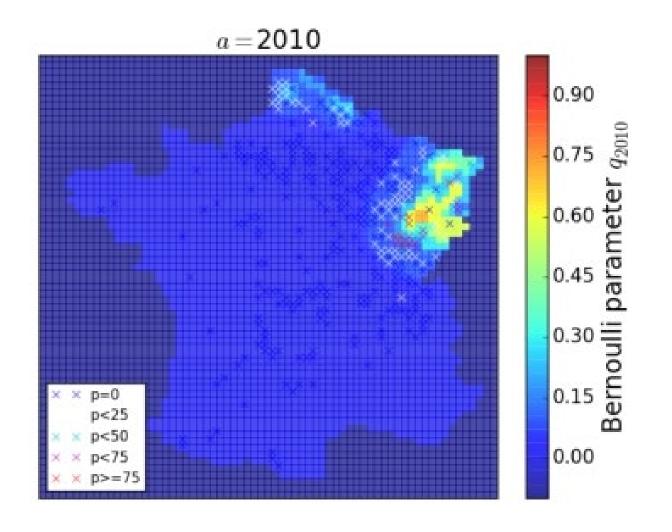


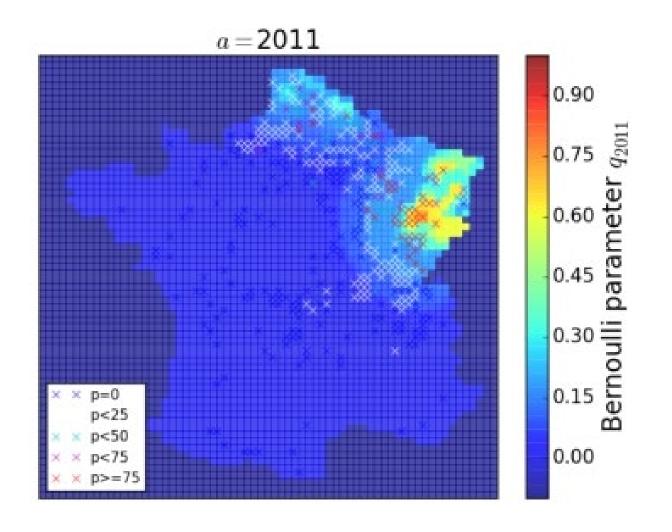
Corrélations:

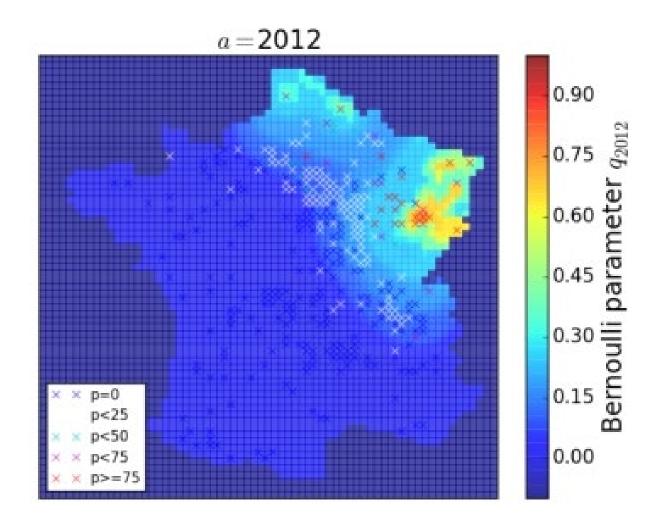
	D	eta_0	κ	S
eta0	-0.98			
κ	0.06	-0.04		
S	0.09	-0.11	0.58	
C_{init}	-0.09	0.07	0.03	-0.14

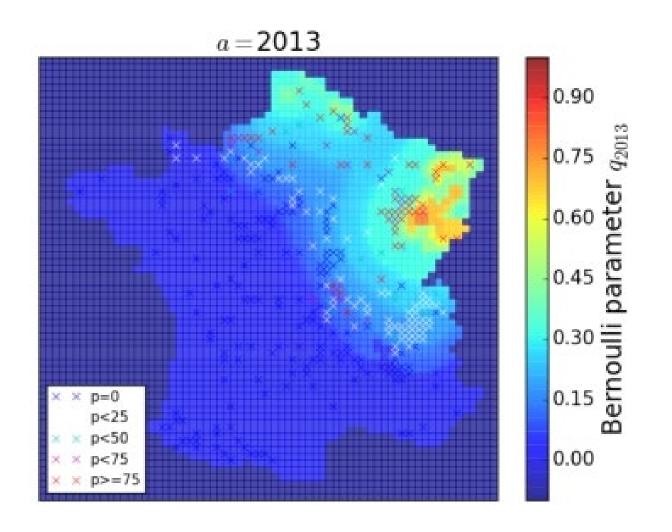


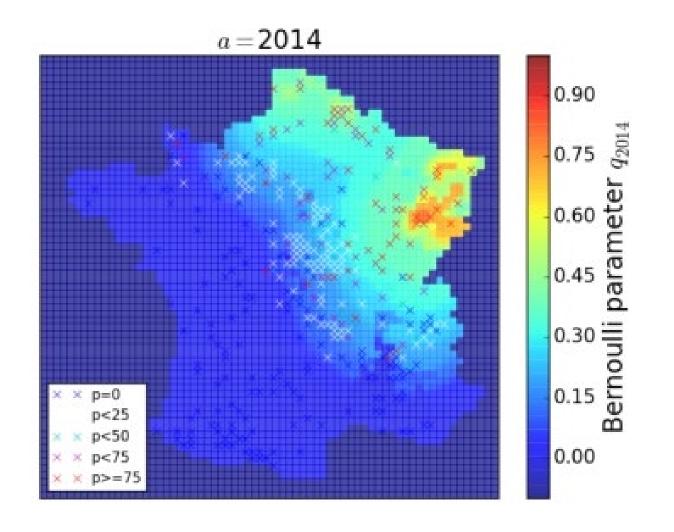


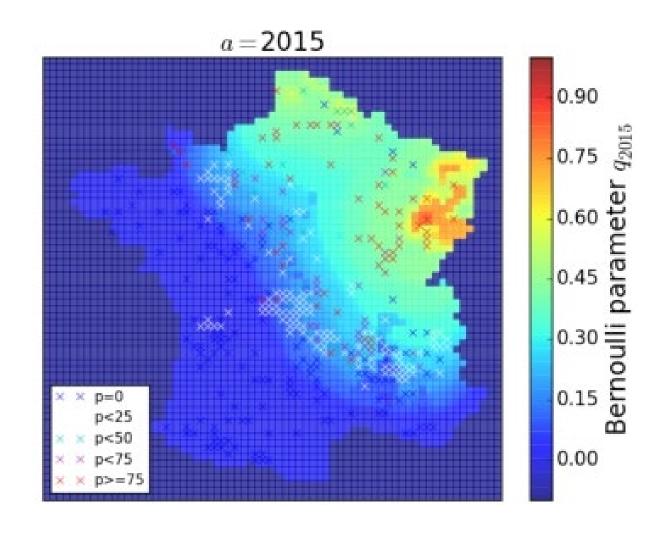


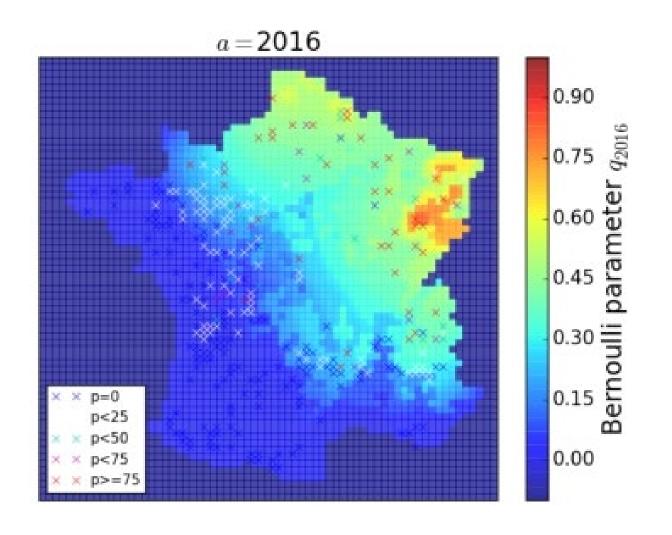


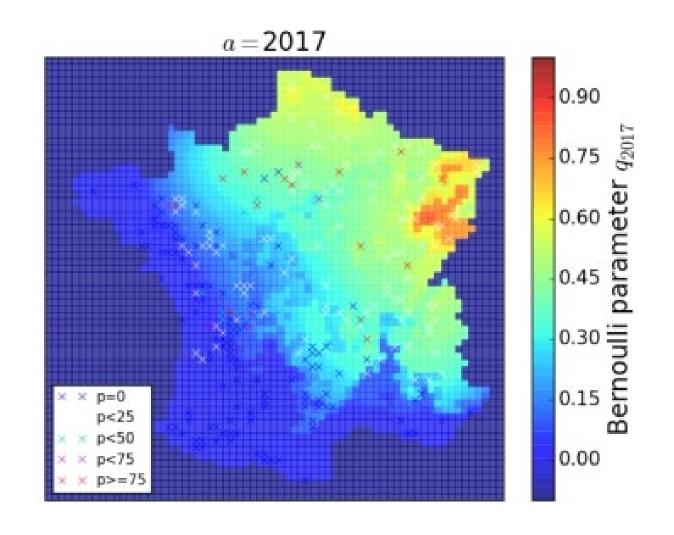


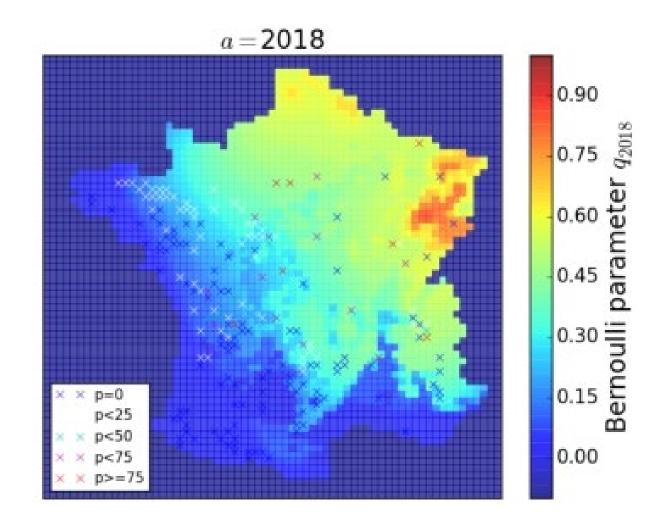


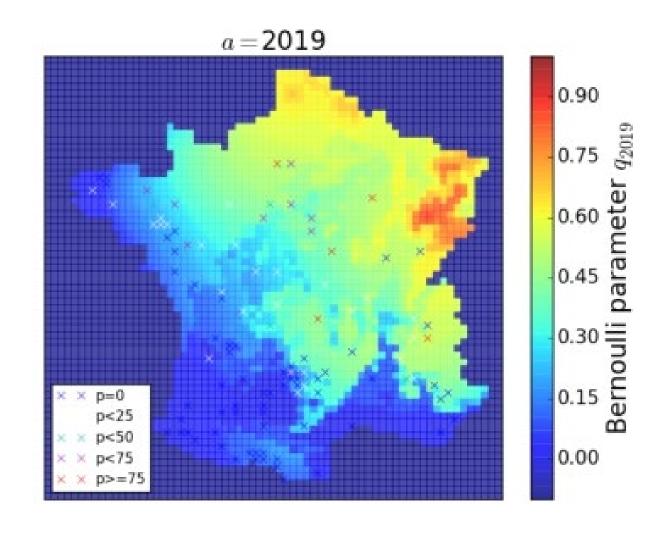


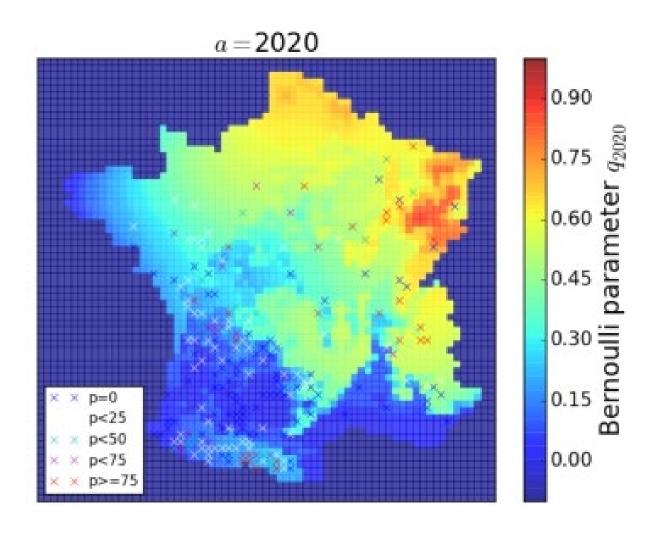




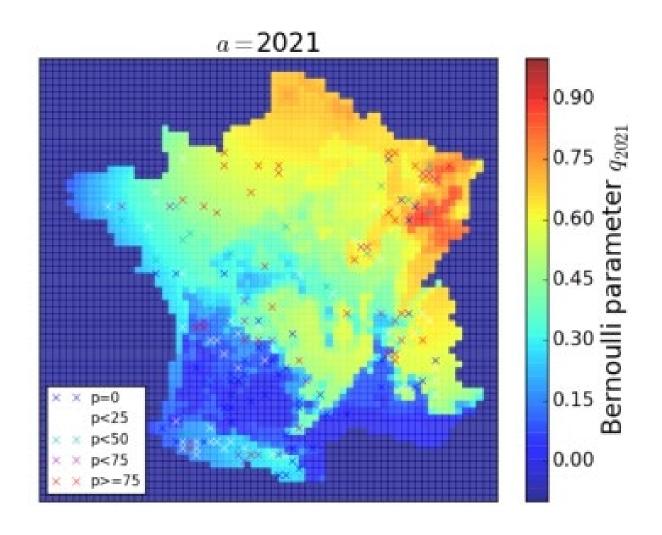






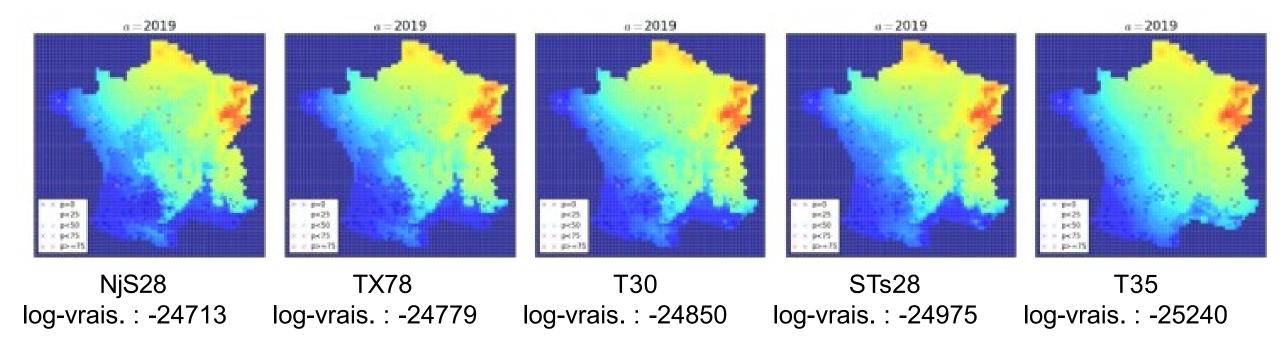


Données 2020 non utilisées pour l'estimation des paramètres



Données 2021 non utilisées pour l'estimation des paramètres

Comparaison des dynamiques pour plusieurs indices de température



Conclusion

Un modèle qui reproduit

- le front de propagation
- le "blocage" de l'épidémie dans le sud
- le "saut" de la Garonne

Réponses à certaines questions initiales des biologistes :

- passage dans les Pyrénées
- indice de température : nombres de jour au dessus de 28°C
- hétérogénéité de la pluviométrie négligeable
- effet Allee négligeable

Pour la suite :

vitesse de propagation du front → étude d'EDP + paramètres estimés du modèle de réaction diffusion

